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CHAPTER 1

Introduction

What is RH 1.5D

RH 1.5D is a modified version of the RH radiative transfer code that runs through a 3D/2D/1D atmosphere column-
by-column, in the same fashion of rhf1d. It was developed as a way to efficiently run RH column-by-column
(1.5D) over large atmospheres, simplifying the output and being able to run in supercomputers. It is MPI-parallel
and scales well to at least 4096 processes.

While initially developed as another geometry on the RH tree, the requirements of the parallel version required
changes to the RH core tree. Thus, it is more than a wrapper over RH and is distributed with a complete modified
version of RH (see below for differences from RH distributed by Han Uitenbroek).

What this manual covers

Because there is much in common with RH, this manual should be seen as an incremental documentation of the
1.5D parallel side. This manual focuses on what is different from RH. Users should refer to the RH documentation
by Han Uitenbroek for more detailed information on RH.

Comparison with RH

RH 1.5D inherits most of the code base from RH, but some features are new. The code is organised in the same
was as the RH source tree, with the routines specific to the 1.5D version residing on a subdirectory rh15d of the
rh source tree. In this way, it works similarly to the subdirectories in rh for different geometries. The compilation
and linking proceeds as for the other geometries: first the general librh.a library should be compiled, and then
the code in rh15d will be compiled and linked to it. The run directory is very similar to that of a given geometry
in RH: most of the *.input files are used in the same way.

The lists below show a comparison between RH 1.5D and RH for a 1D plane-parallel geometry:

Commonalities between RH 1.5D and RH

• Core RH library

• Structure and location of *.input files (some new options available)

3



RH 1.5D Documentation, Release r79

• Wavetable, Atom, Molecule, line list, and any other input files except the atmospheres

• Directory-level compilation and general structure of run directory (new subdirectories needed)

What is new in RH 1.5D

• MPI-parallelism with dynamic load balancing and efficient I/O

• Different format of atmosphere files

• Different formats of output files

• Select which quantities should be in output

• New options for keyword.input and atoms.input

• Hybrid angle-dependent PRD mode

• PRD-switching

• Option for using escape probability approximation as initial solution

• Exclude from the calculations the higher parts of the atmosphere, above a user-defined temperature threshold

• Depth scale optimisation

• Option for cubic Hermite interpolation of source function in formal solver

• Option for Bézier interpolation of source function in formal solvers, both for polarised and unpolarised light

• Support for more types of collisional excitations

• Easy re-run of non-converged columns

• Option for keeping background opacities in memory and not in disk

What is not supported in RH 1.5D

• Currently only a fraction of the RH output is written to disk (to save space), but more output can be added

• The old IDL analysis suite does not currently support the new output format

• solveray is no longer used

• backgrcontr no longer works with the new output

• Any other geometry aside from 1.5D

• Continuing old run by reading populations and output files

• Full Stokes NLTE iterations and background polarisation (might work with little effort, but has not been
tested)

• Thread parallelisation

4 Chapter 1. Introduction



CHAPTER 2

Installation

Getting the code

The code is available on a git repository, hosted on github: https://github.com/ita-solar/rh. If you don’t have git
installed and just want to get started, the easiest way is to download a zip file with the latest revision: https:
//github.com/ita-solar/rh/archive/master.zip. If you have git installed and would like to be up-to-date with the
repository, you can do a git clone:

git clone https://github.com/ita-solar/rh.git

or using SSH (only for contributors):

git clone git@github.com:ita-solar/rh.git

Whether you unpack the zip file or do one of the above it will create a directory called rh in your current path.
This directory will have the following subdirectories:

Directory Contents
rh Main RH source
rh/Atmos Used to keep atmosphere files
rh/Atoms_example Used to keep atom files, line and wavelength lists (example)
rh/idl Old RH IDL routines, not used
rh/Molecules Used to keep molecule files
rh/python Utility Python programs
rh/rh15d_mpi Source files for RH 1.5D
rh/rhf1d Source files for 1D geometry
rh/rhsc2d Source files for 2D geometry, not used
rh/rhsc3d Source files for 3D geometry, not used
rh/rhsphere Source files for spherical geometry, not used
rh/tools Associate C programs for RH, not tested.

Dependencies

RH 1.5D makes use of the HDF5 library to read the atmosphere files and write the output. It is not possible to run
the code without this library. RH 1.5D requires HDF5 version 1.8.1 or newer (versions from branch 1.10.x do not
currently work).
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Note: RH 1.5D previously made use of the netCDF4 library for its output (which in turn also required HDF5).
The latest changes mean RH 1.5D needs only HDF5. Because netCDF4 files are also HDF5 files, the output is
still readable in the same way as before and input files in netCDF version 4 format can still be read in the same
way by RH 1.5D. If you used input atmospheres in netCDF version 3 format, then these will have to be converted
to HDF5. It is recommended that new atmosphere files be created in HDF5 only.

Because HDF5 is commonly used in high-performance computing, many supercomputers already have them avail-
able. In Hexagon, they can be loaded as:

module load cray-hdf5-parallel

in Pleiades:

module load hdf5/1.8.7/gcc/mpt

and at ITA’s Linux system:

module load hdf5/Intel/openmpi/1.8.18

Compilation

Compilation of RH 1.5D consists of two steps:

1. Compilation of the geometry-independent main libraries (librh.a and librh_f90.a)

2. Compilation of the rh15d_mpi tree and main binaries

RH 1.5D has been compiled in a variety of architectures and compilers, including gcc, the Intel compilers, and
clang. As for MPI implementations, it has been tested with SGI’s mpt, OpenMPI, mpich, mvapich, and Intel’s
MPI.

Main libraries

First, one needs to set the environment variables OS and CPU:

export CPU=`uname -m`
export OS=`uname -s`

Note: All the shell commands given in this manual are for bash, so you’ll have to modify them if using another
shell.

The main Makefile will then look for an architecture-dependent Makefile in rh/makefile.$CPU.$OS. If a
Makefile for your system combination does not exist, you’ll have to create a new Makefile and adapt it to your
configuration. You need to make sure that the architecture-dependent Makefile reflects your system’s configuration
(i.e., compiler names and flags).

After setting the correct compiler, just build the main libraries with make on the rh directory. If successful, the
compilation will produce the two library files librh.a and librh_f90.a.

Program binaries

Go to the rh/rh15d_mpi/ directory and update the Makefile with your compiler and flags. You will need to
set CC to the MPI alias (e.g. mpicc). The path to the HDF5 library needs to be explicitly set in HDF5_DIR. In
Hexagon this is already stored in the HDF5_DIR environment variable.

6 Chapter 2. Installation
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If your version of HDF5 was not built as a shared binary, you need to link HDF5 and other used libraries directly.
Set the LDFLAGS accordingly, and update the LIBS variable to contain all the other libraries. For Pleiades, make
sure your Makefile contains the following:

OTHER_LIBRARY_DIR = /path/to/library
HDF5_DIR = /path/to/hdf5
LDFLAGS = -L../ -L$(OTHER_LIBRARY_DIR)/lib/ -L$(HDF5_DIR)/lib/
LIBS = -lrh -lrh_f90 $(ARCHLIBS) -lhdf5_hl -lhdf5 -lz -lm

Once the Makefile is updated, compilation is achieved with make. The following executables will be created:

File Description
rh15d_ray_poolMain RH 1.5D binary, uses a job pool (see Binaries and execution)
rh15d_ray Alternative RH 1.5D binary. Deprecated. This program runs much slower than rh15d_ray_pool

and is kept for backwards compatibility only. Will be removed in a future revision.
rh15d_lteraySpecial binary for running in LTE

Run directory

Once compiled, you can copy or link the binaries to a run directory. This directory will contain all the necessary
input files, and it should contain two subdirectories called output and scratch.

Warning: If the subdirectories output and scratch do not exist in the directory where the code is run,
the code will crash with an obscure error message.

The run directory can be located anywhere, but it must have a directory called Atoms two levels below (i.e.
../../Atoms/) with the Barklem_*data.dat files. This is because these relative paths are hardcoded in
barklem.c. The input files in the run directory must obviously point to existing path names.

2.4. Run directory 7
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CHAPTER 3

Input files

Configuration files

The configuration of an RH 1.5D is made primarily through several text files that reside in the run directory. The
main file is keyword.input. All the other files and their locations are specified in keyword.input. The
source tree contains a sample rh/rh15d/run/ directory with the following typically used configuration files:

File Description
atoms.input Lists the atom files to be used
keyword.input Main configuration file
kurucz.input Contains list of line lists to be used
molecules.input Lists the molecule files to be used
ray.input Selects output mu and wavelengths for detailed output

The kurucz.input and the molecules.input files are identical under RH, so we refer to the RH manual
for more information about them. Most of the other files behave very similarly in RH and RH 1.5D, with a few
differences.

The atoms.input file is identical in RH, but it can also have a new starting solution, ESCAPE_PROBABILITY.

The keyword.input file functions in very much the same manner under RH and RH 1.5D. The main difference
is that there are new options for the 1.5D version, and some options should not be used.

The new keyword.input options for the 1.5D version are:

9
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Name Default value
Description
SNAPSHOT 0
Snapshot index from the atmosphere file.
X_START | 0
Starting column in the x direction. If < 0, will be set to 0.

X_END | -1

Ending column in the x direction. If <= 0, will be set to NX in the atmosphere file.
X_STEP 1
How many columns to sample in the y direction. If < 1, will be set to 1.
Y_START 0
Starting column in the y direction. If < 0, will be set to 0.
Y_END -1
Ending column in the y direction. If <= 0, will be set to NY in the atmosphere file.
Y_STEP 1
How many columns to sample in the y direction. If < 1, will be set to 1.
15D_WRITE_POPS FALSE
If TRUE, will write the level populations (including LTE) for each active atom to output_aux.hdf5.
15D_WRITE_RRATES FALSE
If TRUE, will write the radiative rates (lines and continua) for each active atom to output_aux.hdf5.
15D_WRITE_TAU1 FALSE
If TRUE, will write the height of tau=1 to output_ray.hdf5, for all wavelengths (this takes up as much space as the intensity).
15D_RERUN FALSE
If TRUE, will rerun for non-converged columns.
15D_DEPTH_ZCUT TRUE
If TRUE, will perform a cut in z for points above a threshold temperature
15D_TMAX_CUT -1
Threshold temperature (in K) over which the above depth cut ids made. If < 0, no temperature cut will be made.
15D_DEPTH_REFINE FALSE
If TRUE, will perform an optimisation of the depth scale, based on optical depth, density and temperature gradients.
BACKGR_IN_MEM FALSE
If TRUE, will keep background opacity coefficients in memory instead of scratch files on disk.
COLLRAD_SWITCH 0.0
Defines if collisional radiative switching is on. If < 0, switching parameter is constant (and equal to COLLRAD_SWITCH_INI). If = 0, no collisional radiative switching. If > 0, collisional radiative switching decreases by COLLRAD_SWITCH per log decade, starting with COLLRAD_SWITCH_INI.
COLLRAD_SWITCH_INIT 1.0
Initial increment for collisional-radiative switching
LIMIT_MEMORY FALSE
If TRUE, will not keep several large arrays in memory but rather save them to scratch files. Not recommended unless memory usage is critical.
N_PESC_ITER 3
Number of escape probability iterations, if any atoms have it as initial solution.
PRD_SWITCH 0.0
If > 0, the PRD effects will be added gradually, converging to the full PRD solution in 1/sqrt(PRD_SWITCH) iterations.
PRDH_LIMIT_MEM FALSE
If TRUE and using PRD_ANGLE_APPROX, will not keep in memory quantities necessary to calculate the current PRD weights, but rather calculate them again. Will affect the performance, so should be used only when necessary.
S_INTERPOLATION LINEAR
Type of source function interpolation to use in formal solver. Can be LINEAR, BEZIER, BEZIER3 or CUBIC_HERMITE.
S_INTERPOLATION_STOKES DELO_PARABOLIC
Type of source function interpolation to use in formal solver for polarised cases. Can be DELO_PARABOLIC or DELO_BEZIER3 following1 .
VTURB_MULTIPLIER 1.0
Atmospheric vturb will be multiplied by this value
VTURB_ADD 0.0
Value to be added to atmospheric vturb

1 de la Cruz Rodríguez, J.; Piskunov, N. 2013, ApJ, 764, 33, ADS link.
10 Chapter 3. Input files
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The X_START, X_END, and X_STEP keywords (and the equivalent for the y direction) define which columns of
the atmosphere file are going to be run. They can be used to calculate only a specific region. RH 1.5D chooses the
columns to calculate using the (start, end, step) parameters as in the range() function in Python: the
result is [start, start + step, start + 2 * step, ...]. The last element is the largest start
+ i * step less than end. This means that the numbers given by X_END and Y_END are not inclusive (e.g.
if nx = 50 and X_END = 49, the column with the index 49 will not be calculated). One must set X_END =
nx to calculate all the columns.

The following options have a different meaning under RH 1.5D:

Name Default value Description
PRD_ANGLE_DEP PRD_ANGLE_INDEP This keyword is no longer boolean. To accommodate for

new options, it now takes the values
PRD_ANGLE_INDEP for angle-independent PRD,
PRD_ANGLE_DEP for angle-dependent PRD, and
PRD_ANGLE_APPROX for the approximate
angle-dependent scheme of Leenaarts et al. (2012)2 .

BACKGROUND_FILE This keyword is no longer the name of the background
file, but the prefix of the background files. There will be
one file per process, and the filenames are this prefix plus
_i.dat, where i is the process number.

STOKES_INPUT This option is not used in RH 1.5D because the magnetic
fields are now written to the atmosphere file. However, it
must be set to any string if one is using any
STOKES_MODE other than NO_STOKES (RH won’t
read B otherwise).

And the following options are valid for RH but may not work with RH 1.5D:

Name Default value Description
LIMIT_MEMORY FALSE This option has not been tested and may not work well with RH 1.5D.
PRINT_CPU FALSE This option does not work with RH 1.5D and should always be FALSE.
N_THREADS 0 Thread parallelism will not work with RH 1.5D. This option should

always be 0 or 1.

The ray.input has the same structure in RH1D and RH 1.5D. In RH it is used as input for the solveray
program, but in RH 1.5D it is used for the main program. It should contain the following:

1.00
Nsource

The first line is the mu angle for the output ray, and it should always be 1.00. The second line is Nsource,
the number of wavelengths for which detailed output (typically source function, opacity, and emissivities) will be
written. If Nsource > 0, it should be followed in the same line by the indices of the wavelengths (e.g. 0 2
10 20).

Atom and molecule files

The atom and molecule files have the same format as in RH. In the rh/Atoms and rh/Molecules directories
there are a few sample files. They are read by the procedures in readatom.c and readmolecule.c. The
atom files have the following basic structure:

2 Leenaarts, J., Pereira, T. M. D., & Uitenbroek, H. 2012, A&A, 543, A109, ADS link.
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Input Format
ID (A2). Two-character atom identifier.
Nlevel Nline Ncont Nfixed (4I). Number of levels, lines, continua, and fixed radiation tempera-

ture transitions.
level_entries Nlevel * (2F, A20, I)
line entries Nline * (2I, F, A, I, A, 2F, A, 6F)
continuum_entries Ncont * (I, I, F, I, A, F)
fixed_entries Ncont * (2I, 2F, A)

Atmosphere files

The atmosphere files for RH 1.5D are a significant departure from RH. They are written in the flexible and self-
describing HDF5 format. They can be written with any version, except the 1.10.x development branch.

The atmosphere files contain all the atmospheric variables necessary for RH 1.5D, and they may contain one or
more simulation snapshots. The basic dimensions of the file are:

nt Number of snapshots.
nx Number of x points
ny Number of y points.
nz Number of depth points.
nhydr Number of hydrogen levels.

While strictly 3D atmosphere files, 2D and 1D snapshots can also be used provided that one or both of nx and ny
are equal to 1.

The atmosphere file can contain the following variables:

Name Dimensions Units Notes
B_x (nt, nx, ny, nz) T Magnetic field x component.

Optional
B_y (nt, nx, ny, nz) T Magnetic field x component.

Optional
B_z (nt, nx, ny, nz) T Magnetic field z component.

Optional
electron_density (nt, nx, ny, nz) m-3 Optional.
hydrogen_populations (nt, nhydr, nx, ny, nz) m-3 nhydr must correspond to

the number of levels in the
hydrogen atom used. If
nhydr=1, this variable
should contain the total
number of hydrogen atoms
(in all levels), and LTE
populations will be
calculated.

snapshot_number (nt) None The snapshot number is an
array of integers to identify
each snapshot in the output
files.

temperature (nt, nx, ny, nz) K
velocity_z (nt, nx, ny, nz) m s-1 Vertical component of

velocity.
z (nt, nz) m Height grid. Can be

different for each snapshot,
hence the nt dependence.

Any other variable in the file will not be used. In addition, the atmosphere file must have a global attribute
called has_B. This attribute should be 1 when the magnetic field variables are present, and 0 otherwise. Also

12 Chapter 3. Input files
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recommended, but optional, is a global attribute called description with a brief description of the atmosphere
file (e.g. how and from they were generated).

Note: Variables in the atmosphere files can be compressed (zlib or szip), but compression is not recommended
for performance reasons.

As HDF5 files, the contents of the atmosphere files can be examined with the h5dump utility. To see a summary
of what’s inside a given file, one can do:

h5dump -H atmosfile

Here is the output of the above for a sample file:

HDF5 "example.hdf5" {
GROUP "/" {

ATTRIBUTE "boundary_bottom" {
DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "boundary_top" {

DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "description" {

DATATYPE H5T_STRING {
STRSIZE H5T_VARIABLE;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_UTF8;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR

}
ATTRIBUTE "has_B" {

DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "nhydr" {

DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "nx" {

DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "ny" {

DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "nz" {

DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
DATASET "electron_density" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( 1, 512, 512, 425 ) / ( H5S_UNLIMITED, 512, 512, 425 ) }

}
DATASET "hydrogen_populations" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( 1, 6, 512, 512, 425 ) / ( H5S_UNLIMITED, 6, 512, 512,

→˓425 ) }
}

3.3. Atmosphere files 13
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DATASET "snapshot_number" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}
DATASET "temperature" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( 1, 512, 512, 425 ) / ( H5S_UNLIMITED, 512, 512, 425 ) }

}
DATASET "velocity_z" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( 1, 512, 512, 425 ) / ( H5S_UNLIMITED, 512, 512, 425 ) }

}
DATASET "x" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( 512 ) / ( 512 ) }

}
DATASET "y" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( 512 ) / ( 512 ) }

}
DATASET "z" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( 1, 425 ) / ( H5S_UNLIMITED, 425 ) }

}
}
}

All the floating point variables can be either double or single precision.

Line lists and wavelength files

Other auxiliary files that can be used are line lists files and wavelength files.

The line list files are used to include additional lines not included in the different atoms. These lines will be treated
in LTE. The line lists are specified in the kurucz.input file (one per line), and have the Kurucz line list format
(link).

Just adding new transitions doesn’t mean that they will be included in the synthetic spectra. The extra lines will
only be included in the existing wavelength grid, which depends on the active atoms used. The calculation of
additional wavelengths can be forced by using a wavelength file. This file is specified in keyword.input
using the keyword WAVETABLE. The format is a binary XDR file. Its contents are, in order: the number of new
wavelengths (1 XDR int), vacuum wavelength values (XDR doubles).

14 Chapter 3. Input files
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Running the code

Binaries and execution

Compilation should produce three executables: rh15d_ray_pool, rh15d_ray, and rh15d_lteray. The
latter is a special case for running only in LTE. The other two are the main programs. They represent two different
modes of job distribution: normal and pool.

In the pool mode there is a process that works as overlord: its function is to distribute the work to other processes.
The other processes (drones) ask the overlord for a work unit. When they finish their unit, they go back and
ask for more, until all tasks are completed. Because of race conditions and because different columns will run
at different speeds, it is not possible to know which columns a given process will run beforehand. Due to the
overlord, rh15d_ray_pool needs to run with two or more processes. The advantage of the pool mode is that
the dynamic load allocation ensures the most efficient use of the resources. With the normal mode it may happen
that some processors will work on columns that take longer to converge (especially as they are adjacent), and in
the end the execution will have to wait for the process that takes longer. In some cases (especially with PRD) the
pool mode can be 2-3 times faster than the normal mode. When one runs with a large number of processes (>
2000) and each column takes little time to calculate, the pool mode can suffer from communication bottlenecks
and may be slower because a single overlord cannot distribute the tasks fast enough. The only disadvantage of the
pool mode (so far) is that not all output is currently supported with this mode.

The ‘normal‘ mode is deprecated and will be removed in a later revision. Use only if you know what you’re
doing! In the normal mode the jobs (all the atmosphere columns for which one wants to calculate) are divided
by the number of processes at the start of the execution. There is no communication between processes, and each
process knows from the start all the columns it is going to run. These columns are adjacent. If the number of
columns is not a multiple of the number of processes, there will be some processes with larger workloads. There
is no minimum number of processes to run, and rh15d_ray can also be run in a single process. Regions of an
atmosphere can take a lot longer to run than others, and the processes that work on those will take longer to finish.
In the normal mode this means that the slowest process will set the overall running time, and therefore in practice
it can take more than 10x longer than the pool mode (and is therefore not recommended).

As an MPI program, the binaries should be launched with the appropriate command. Some examples:

mpirun -np N ./rh15d_ray_pool
mpiexec ./rh15d_ray_pool # use in Pleiades
aprun -B ./rh15d_ray # use in Hexagon or other Cray
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The run directory

Warning: Before running, make sure you have the sub-directories scratch and output in the run direc-
tory and that two levels below there is an Atoms directory (../../Atoms/).

The run directory contains the configuration files, the binaries, and the scratch and output directories. As
the names imply, temporary files will be placed under scratch and the final output files in output. No files
under scratch will be used after the run is finished (they are not read for re-runs).

The scratch directory contains different types of files. Most of them are binary files write by RH 1.5D to save
memory. Example files are the background_p*.dat with the background opacities, files with PRD weights,
and the rh_p*.log log files. Each process creates one of those files, and they will have the suffix _pN.*, where
N is the process number. The log files have the same format as in RH. The writing of each process’s log file is
buffered by line. Because these are updated often, when running with many processes this can be a drag on some
systems. Therefore, it is possible to run full buffering (meaning log files are only written when the main program
finishes). This option is not exposed in the configuration files, so one needs to change the file parallel.c in
the following part:

/* _IOFBF for full buffering, _IOLBF for line buffering */
setvbuf(mpi.logfile, NULL, _IOLBF, BUFSIZ_MPILOG);

One should replace _IOLBF by _IOFBF to change from line buffering to full buffering.

The output will contain the three output files: output_aux.hdf5, output_indata.hdf5, and
output_ray.hdf5. See Output file structure for more details on the structure of these files. If doing a re-
run, these files must already exist; they will be updated with the new results. Otherwise, if these files are already
in output before the execution, they will be overwritten. The way that HDF5 work means that these files are
created and filled with special (masked) values at the start of the execution. This means that the disk space for the
full output must be available at the start of the run, and no CPU time will be wasted if at the end of the run there
is not enough disk space. The files are usually written every time a process finishes work on a given column. The
masked values are overwritten with the data. One advantage of this method is that even if the system crashes or
the program stops, it is possible to recover the results already written (and a re-run can be performed for just the
missing columns).

All the processes write asynchronously to all the output files. In some cases this can cause contention in the
filesystem, with many processes trying to access the same data at the same time. In the worst case scenario, the
contention can create bottlenecks which practically stop the execution. Therefore, it is highly recommended that
the users tune their filesystem for the typical loads of RH. Many supercomputers make use of Lustre, a parallel
filesystem. With Lustre, resources such as files can be divided in different stripes that can be placed in several
different machines (OSTs). For running RH with more than 500 processes, one should use as many OSTs as
available in the system, and select the lustre stripe size to the typical amount of data written to a file per simulation
column. The stripe can set with the lfs setstripe command:

lfs setstripe -s stripe_size -c stripe_count -o stripe_offset directory|filename

It can be run per file (e.g. output_ray.hdf5), or for the whole output directory. Using a stripe count of -1
will ensure that the maximum number of OSTs is used. For the typical files RH 1.5D produces, it is usually ok to
apply the same Lustre settings to the whole output directory, and the following settings seem to reasonable:

lfs setstripe -s 4m -c -1 output/

Similarly, the scratch directory can also benefit from Lustre striping. Because most files there are small, it is
recommended to use a stripe count of 1 for scratch.
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Logs and messages

In addition to the logs per process saved to scratch, a much smaller log will be printed in stdout. This log is
a smaller summary of what each process is doing. Here is an example of typical messages:

Process 1: --- START task 1, (xi,yi) = ( 0,156)
Process 232: --- START task 1, (xi,yi) = ( 0,159)
Process 36: --- START task 1, (xi,yi) = ( 0,162)
Process 12: --- START task 1, (xi,yi) = ( 0,171)
(...)
Process 12: *** END task 1 iter, iterations = 121, CONVERGED
Process 3: *** END task 1 iter, iterations = 200, NO Convergence
Process 4: *** SKIP task 1 (crashed after 81 iterations)
Process 3: --- START task 2, (xi,yi) = ( 23, 64)
Process 12: --- START task 2, (xi,yi) = ( 23, 65)
Process 4: --- START task 2, (xi,yi) = ( 23, 65)
(...)

*** Job ending. Total 262144 1-D columns: 262142 converged, 1 did not converge, 1
→˓crashed.

*** RH finished gracefully.

In this example one can see the three possible outputs for a single-column calculation: convergence, non-
convergence (meaning the target ITER_LIMIT was not met in N_MAX_ITER iterations), or a crash (many rea-
sons). If there are singular matrices or other causes for a column to crash, RH 1.5D will skip that column and
proceed to the next work unit. Such cases can be re-run with different parameters. In some cases (e.g. inexistent
files) it is not possible to prevent a crash, and RH 1.5D will finish non-gracefully.

Helper script

There is a Python script called runtools.py designed to make it easier to run RH 1.5D for large projects. It
resides in rh/python/runtools.py. It requires Python with the numpy and h5py (or netCDF4) modules.
It was made to run a given RH 1.5D setup over many simulation snapshots, spanning several atmosphere files. It
supports a progressive re-run of a given problem, and allows the of use different keyword.input parameters
for different columns, tackling columns harder to converge.

The first part of runtools.py should be modified for a users’s need. It typically contains:

atmos_dir = '/mydata_dir'
seq_file = 'RH_SEQUENCE'
outsuff = 'output/output_ray_mysim_CaII_PRD_s%03i.hdf5'
mpicmd = 'mpiexec'
bin = './rh15d_ray_pool'
defkey = 'keyword.save'
log = 'rh_running.log'
tm = 40
rerun = True
rerun_opt = [ {'NG_DELAY': 60, 'NG_PERIOD': 40, '15D_DEPTH_REFINE': 'FALSE',

'15D_ZCUT': 'TRUE', 'N_MAX_ITER': 250, 'PRD_SWITCH': 0.002 },
{'NG_DELAY': 120, 'NG_PERIOD': 100, '15D_DEPTH_REFINE': 'TRUE',
'PRD_SWITCH': 0.001 } ]

The different options are:
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Name Type Description
atmos_dir string Directory where the atmosphere files are kept.
seq_file string Location of sequence file. This file contains the names of the atmosphere files to be

used (one file per line). The script will then run RH 1.5D for every snapshot in every
file listed.

outsuff string Template to write the output_ray.ncdf files. The %03i format will be replaced
with the snapshot number.

mpicmd string System-dependent command to launch MPI. The script knows that for aprun the -B
option should be used. This option also activates system specific routines (e.g. how
to kill the run in pleiades).

bin string RH 1.5D binary to use.
defkey string Default template for keyword.input. Because the of the rerun options,

keyword.input is overwritten for every rerun. This file is used as a template
it (i.e., most of its options will be unchanged, unless specified in rerun_opt).

log string File where to save the main log. Will be overwritten for each new snapshot.
tm int Timeout (in minutes) to kill execution of code, if there is no message written to main

log. Used to prevent code from hanging if there are system issues. After killed,
program is relaunched. If tm = 0, program will never be killed.

rerun bool If True, will re-run the program (with different settings) to achieve convergence if
any columns failed. Number of reruns is given by size of rerun_opt.

rerun_opt list Options for re-run. This is a list made of dictionaries. Each dictionary contains
the keywords to update keyword.input. Only the keywords that differ from the
defkey file are necessary.

Note: Only the first line of the sequence time is read at a time. The script reads the first line, deletes it from
the file, and closes the file. It then reads the first line again and continues running, until there are no more lines
in the file. This behaviour enables the file to be worked by multiple scripts at the same time, and allows one to
dynamically change the task list at any time of the run.

Note: The script also includes a tenaciously persistent wait and relaunch feature designed to avoid corruption if
there are system crashes or problems. Besides the tm timeout, if there is any problem with the execution, the code
will wait for some periods and try and relaunch the code. For example, if one of the atmosphere files does not
exist, runtools.py will try three times and then proceed to the next file.
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CHAPTER 5

Analysis of output

Output file structure

The output is written to three files: output_aux.hdf5, output_indata.hdf5, and output_ray.
hdf5. This is a big departure from RH, which contained several more output files. In particular, RH 1.5D
will not write all the information that was written by RH, due to the sheer size it would take for large 3D simu-
lations. The files are written in the machine-independent, self-describing HDF5 format. The contents of the files
are organised in groups, variables, and attributes. Groups and variables can be imagined as directories and files in
a filesystem. Inside groups, different variables and dimensions can be organised. The content of the output files
can vary: some runs will have more detailed information and therefore more variables written to the files.

The structure of the three files is given below.

Note: When a column fails to converge, output for that column is not written. This means that the variables
that depend on (nx, ny) will have some values missing. HDF5 marks these values as missing data and uses
a fill value (of 9.9692e+36). When the 15D_DEPTH_ZCUT option is used, not all heights will be used in the
calculation. The code does not read the skipped parts of the atmosphere. When writing such variables of nz, only
the points that were used are written to the file, and the rest will be marked as missing data (typically the z cut
height varies with the column).

output_aux.hdf5

This file contains the level populations and radiative rates. For each active atom or molecule, it contains different
groups called atom_XX or molecule_XX, where XX is the identifier for the species (e.g. MG, CO).

The dimensions of the root group are nx, ny, and nz.

Note: The atmosphere dimensions on many of the output files are not necessarily the same as in the atmosphere
file. They depend on the number of columns calculated, which are a function of X/Y_START/END/STEP.

There are two global attributes:

atmosID Identifier for the atmosphere file.
rev_id Revision identifier.
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Inside each of the atom/molecule groups, the following dimensions can exist:

Name Description
nlevel Number of atomic levels.
nline Number of atomic transitions
ncontinuum Number of bound-free transitions.
nlevel_vibr Number of molecule vibration levels.
nline_molecule Number of molecular lines.
nJ Number of rotational states.

The atom groups contain the following variables:

The molecule groups contain the following variables:

All units are SI.

Note: In older versions it was possible to specify the keyword 15D_WRITE_EXTRA and get additional output
written to output_aux.hdf5 (e.g. a new opacity group and more rates). While the procedures are still in
writeAux_p.c, the functionality is deprecated because other changes in the code were not compatible with this
way of writing the output. It is possible that this functionality will return at a later version.

output_indata.hdf5

This file contains data and metadata related to the run. It contains three groups: input (mostly settings from
keyword.input), atmos (atmospheric variables), and mpi (several variables relating to the run).

The dimensions of the root group are nx, ny, nz, and strlen (used as maximum length for string type variables).

There are two global attributes:

atmosID Identifier for the atmosphere file.
rev_id Revision identifier.

The input group contains only attributes, all options from keyword.input.

The atmos groups contains the dimensions nhydr, elements and nrays. It also contains the following
variables:

Name Dimensions Units Description
temperature (nx, ny, nz) K Temperatures
velocity_z (nx, ny, nz) m s-1 Vertical velocities
height (nx, ny, nz) m Height scale used. Can be different for

every column when depth refine is used.
element_weight (nelements) a.m.u. Atomic weights
element_abundance (nelements) Log of element abundances relative to

hydrogen (A(H) = 12).
element_id (nelements, strlen) Element identifiers.
muz (nrays) mu values for each ray.
muz (nrays) mu weights for each ray.
x (nx) m Spatial coordinates along x axis.
y (ny) m Spatial coordinates along y axis.

Note: When 15D_DEPTH_REFINE is used, each column will have a different (optimised) height scale, but they
all have the same number of depth points (nz). In these cases, it is very important to save the height variable
because otherwise one does not know how to relate the height relations of quantities from different columns.

The atmos group also contains the following attributes:

moving Unsigned int, 1 if velocity fields present.
stokes Unsigned int, 1 if stokes output present.
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The mpi group contains the dimensions nprocesses (number of processes) and niterations (maximum
value of iterations).

Warning: niterations is currently hardcoded in the code to a maximum of 1500. If you try to run more
than 1500 iterations, there will be an error writing to the output.

The mpi group also contains several variables:

Name Dimensions Description
xnum (nx) Indices of x positions calculated.
xnum (nx) Indices of x positions calculated.
task_map (nx, ny) Maps which process ran which column.
task_map_number (nx, ny) Maps which task number each column was.
iterations (nx, ny) Number of iterations used for each column.
convergence (nx, ny) Indicates if each column converged or not. Pos-

sible values are 1 (converged), 0 (non con-
verged), or -1 (crashed).

delta_max (nx, ny) Final value for delta_max when iteration
finished.

delta_max_history (nx, ny, niterations) Evolution of delta_max
ntasks (nprocesses) Number of tasks assigned to each process.

Does not work in pool mode.
hostname (nprocesses, strlen) Hostname of each process.
starting_time (nprocesses, strlen) Time when each process started the calcula-

tions.
finish_time (nprocesses, strlen) Time when each process finished the calcula-

tions.
z_cut (nx, ny) Height index of the temperature cut.

The mpi group also contains the following attributes: x_start, x_end, x_step, y_start, y_end, and
y_step, all of which are options from keyword.input.

output_ray.hdf5

This file contains the synthetic spectra and can also contain extra information such as opacities and the
source function. It contains only the root group. Its dimensions are nx, ny, nwave, and eventually
wavelength_selected. The latter is only present when ray.input specifies more than 0 wavelengths
for detailed output, and it matches Nsource, the number of those wavelengths entered in ray.input.

It can contain the following variables:
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Name Dimensions Description
wavelength (nwave) Wavelength scale.
intensity (nx, ny, nwave) Synthetic disk-centre inten-

sity (Stokes I).
stokes_Q (nx, ny, nwave) Stokes Q. Optional.
stokes_U (nx, ny, nwave) Stokes U. Optional.
stokes_V (nx, ny, nwave) Stokes V. Optional.
tau_one_height (nx, ny, nwave) Height where optical depth

reaches unity, for each col-
umn. Optional.

wavelength_indices (wavelength_selected) Indices of wavelengths se-
lected for variables below.
Optional.

chi (nx, ny, nz, wavelength_selected) Total opacity (line and con-
tinuum). Optional.

source_function (nx, ny, nz, wavelength_selected) Total opacity (line and con-
tinuum). Optional.

Jlambda (nx, ny, nz, wavelength_selected) Angle-averaged radiation
field. Optional.

All units are in SI. The intensity, Stokes vector, source_function, Jlambda are all in J s-1m-2Hz-1sr-1.
The wavelength is in nm, air or vacuum units, depending if VACUUM_TO_AIR is TRUE or FALSE (in
keyword.input). chi is in m-1and tau_one_height in m.

Despite internally being calculated in double precision, all the output (except the wavelength scale) is written in
single precision to save disk space.

The full Stokes vector is only written when in keyword.input STOKES_MODE is not NO_STOKES and the
STOKES_INPUT is set.

The chi, source_function, and Jlambda variables depend on the 3D grid and on wavelength. There-
fore, for even moderate grid sizes they can take huge amounts of space. If nx = ny = nz = 512 and
wavelength_selected = 200, each of these variables will need 100Gb of disk space. For a simulation
with a cubic grid of 10243 points and saving the full output for 1000 wavelength points, output_ray.hdf5
will occupy a whopping 12Tb per snapshot of disk space. To avoid such problems, these large arrays are only
written when ray.input contains Nsource > 0, and for the wavelengths selected.

Note: As noted above, arrays of nz will have the first values missing if 15D_DEPTH_ZCUT is used. The
variables chi, source_function, and Jlambda are an exception to this rule. For performance reasons these
missing values are not marked with a fill value, but instead they are filled with zeros.

The output_ray.hdf5 file contains the following global attributes:

atmosID Identifier for the atmosphere file
snapshot_number Number of simulation snapshot (from atmosphere file)
rev_id Revision identifier
creation_time Local time when file was created

Reading the output files

HDF5 is an open, platform-independent format, and therefore interfaces to many programming languages are
available. The main interface libraries are available in C, C++, Fortran, and Java. But there are also interfaces for
Python (h5py), Julia, IDL (from version 6.2), MATLAB , Octave, Perl, and R.

The RH 1.5D output files can be read with standard HDF5 or NetCDF 4 readers: in most cases one needs to
specify only the variable or group name. The HDF5 library provides useful command line tools, which can be
used to gather information about the RH 1.5D files or extract data. Additionally, there is a more complete set of
tools written in Python to read and analyse these files. Interfaces in other languages are also planned.
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Warning: Because of the limitations of different languages, not all interfaces support all HDF5 features.
IDL in particular does not support masked arrays. This means that when reading variables with missing data
(see Output file structure), IDL will happily read all the data with no warning or indication of those that have
special fill values.

Command line tools

Two useful command line tools that come with HDF5 are h5dump and h5repack.

As shown above, h5dump can be used with the -H option to look at the header of a file: see the dimensions,
variables, groups. It can also be used to print a text version of any variable in an HDF5 file (e.g. this can be
redirected to a text file). When printing a variable one uses the option -v variable, and the resulting output is
the same as in the -H mode, with the variable printed at the end.

The h5repack program can be used to copy and modify the parameters of HDF5 files. It can convert the files
between different format versions, compress variables, etc. Of particular importance is the option for rechunking
a file. Chunking in HDF5 files can be used to improve performance by changing the disk structures to improve
different read patterns. It is analogous to fully or partially transposing the variables along certain dimensions.

See also:

h5dump guide Detailed information about h5dump.

h5repack guide Detailed information about h5repack.

Chunking in HDF5 Description on the advantages of chunking.

Python interface

Python routines to read the input, output, and more are available at rh/python/rh15d.py. They require the
numpy and h5py (or netCDF4) modules.

Reading output files

The main class to read the output is called Rh15dout. It can be initiated in the following way:

>>> from rh15d import *
>>> rr = rh15d.Rh15dout()
--- Read ./output_aux.hdf5 file.
--- Read ./output_indata.hdf5 file.
--- Read ./output_ray.hdf5 file.

By default, it will look for the three files in the directory specified as main argument (defaults to current directory).
Additionally, the methods read_aux(infile), read_indata(infile), and read_ray(infile) can
be used to manually load a file. The variables themselves are not read into memory, but are rather a memmap object
(file pointer; only read when needed).

After loading the files, the Rh15dout instance maps them into different classes. The ray class contains all the
variables that were saved in the output_ray.hdf5 as attributes:

>>> [a for a in dir(rr.ray) if a[0] != '_']
['intensity',
'params',
'stokes_Q',
'stokes_U',
'stokes_V',
'chi',
'source_function',
'scattering',
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'Jlambda',
'tau_one_height',
'wavelength',
'wavelength_indices']

>>> rr.ray.intensity
<HDF5 dataset "intensity": shape (256, 256, 1626), type "<f4">

Several of the options from output_indata.hdf5, along with many of the dimensions used, are gathered
into a method called params, saved as a dictionary. The mpi and atmos groups of output_indata.hdf5,
with all their variables are like ray, added into classes with the same name that are methods of the Rh15dout
instance. For example:

>>> rr.mpi.convergence
<HDF5 dataset "convergence": shape (256, 256), type "<i8">
>>> rr.atmos.temperature
<HDF5 dataset "temperature": shape (256, 256, 400), type "<f4">

Likewise, the groups of output_aux.hdf5 are also added as classes that are methods of the main instance:

>>> [a for a in dir(rr.atom_CA) if a[0] != '_']
['Rij_continuum',
'Rij_line',
'Rji_continuum',
'Rji_line',
'params',
'populations',
'populations_LTE']

All the groups and variables are therefore automatically added, so they will adapt to any changes in the output
files.

Reading input files

The HDF5Atmos class can be used to read the input atmosphere files. It can be initiated in the following way:

>>> from rh15d import *
>>> atm = rh15d.HDF5Atmos('my_atmos.hdf5')

Inspection of the result reveals the variables, a dictionary called param with basic data and the properties of the
variables:

>>> [a for a in dir(atm) if a[0] != '_']
['B_x',
'B_y',
'B_z',
'close',
'closed',
'electron_density',
'file',
'hydrogen_populations',
'params',
'read',
'snapshot_number',
'temperature',
'velocity_z',
'write_multi',
'write_multi_3d',
'x',
'y',
'z']

>>> atm.params # Contains basic properties
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{'boundary_bottom': 1,
'boundary_top': 0,
'description': 'Created with make_hdf5_atmos.on 2017-04-03 17:32:06.831811',
'has_B': 1,
'nhydr': 6,
'nt' : 4,
'nx': 512,
'ny': 512,
'nz': 400}

>>> atm.velocity_z
<HDF5 dataset "velocity_z": shape (4, 512, 512, 400), type "<f4">

This interface is read-only, no modifications to the atmosphere files are possible.

Writing input files

In rh15d.py there is also a function to write the input atmosphere, assuming the user already has the required
arrays at hand. Its function definition is:

def make_hdf5_atmos(outfile, T, vz, nH, z, x=None, y=None, Bz=None, By=None,
Bx=None, rho=None, ne=None, vx=None, vy=None, desc=None,
snap=None, boundary=[1, 0], comp=None, complev=None,
append=False):

"""
Creates HDF5 input file for RH 1.5D.

Parameters
----------
outfile : string

Name of destination. If file exists it will be wiped.
T : n-D array

Temperature in K. Its shape will determine the output
dimensions (can be 1D, 2D, or 3D).

vz : n-D array
Line of sight velocity in m/s. Same shape as T.

nH : n-D array
Hydrogen populations in m^-3. Shape is [nhydr, shape.T] where
nydr can be 1 (total number of protons) or more (level populations).

z : n-D array
Height in m. Can have same shape as T (different height scale
for each column) or be only 1D (same height for all columns).

ne : n-D array, optional
Electron density in m^-3. Same shape as T.

rho : n-D array, optional
Density in kg / m^-3. Same shape as T.

vx : n-D array, optional
x velocity in m/s. Same shape as T. Not in use by RH 1.5D.

vy : n-D array, optional
y velocity in m/s. Same shape as T. Not in use by RH 1.5D.

Bx : n-D array, optional
Magnetic field in x dimension, in Tesla. Same shape as T.

By : n-D array, optional
Magnetic field in y dimension, in Tesla. Same shape as T.

Bz : n-D array, optional
Magnetic field in z dimension, in Tesla. Same shape as T.

x : 1-D array, optional
Grid distances in m. Same shape as first index of T.

y : 1-D array, optional
Grid distances in m. Same shape as second index of T.

x : 1-D array, optional
Grid distances in m. Same shape as first index of T.

5.2. Reading the output files 25



RH 1.5D Documentation, Release r79

snap : array-like, optional
Snapshot number(s).

desc : string, optional
Description of file

boundary : Tuple, optional
Tuple with [bottom, top] boundary conditions. Options are:
0: Zero, 1: Thermalised, 2: Reflective.

append : boolean, optional
If True, will append to existing file (if any).

comp : string, optional
Options are: None (default), 'gzip', 'szip', 'lzf'.

complev : integer or tuple, optional
Compression level. Integer for 'gzip', 2-tuple for szip.

"""

Both zlib and szip compression are supported but again this is not recommended.

Writing wavelength files

Another utility function in rh15d.py is make_wave_file. It creates an RH wavelength file from a given
array of wavelengths. It’s usage is documented in its function call:

def make_wave_file(outfile, start=None, end=None, step=None, new_wave=None,
ewave=None, air=True):

"""
Writes RH wave file (in xdr format). All wavelengths should be in nm.

Parameters
----------
start: number

Starting wavelength.
end: number

Ending wavelength (non-inclusive)
step: number

Wavelength separation
outfile: string

Name of file to write.
ewave: 1-D array, optional

Array of existing wavelengths. Program will make discard points
to make sure no step is enforced using these points too.

air: boolean, optional
If true, will at the end convert the wavelengths into vacuum
wavelengths.

"""

Other languages

While many other languages have interfaces to read HDF5 files, there are no specific routines for reading the
output from RH 1.5D. Support for other languages may be added later as demand requires.

Under RH 1.5D idl/ directory is routine named read_ncdf_var.pro. The function read_ncdf_var()
can be used to read variables from an HDF5 or netCDF4 file, e.g.:

IDL> data = read_ncdf_var("output_ray.hdf5", "intensity")
IDL> help, data
DATA FLOAT = Array[902, 512, 512]
IDL> pops = read_ncdf_var("output_aux.hdf5", "populations", groupname="atom_CA")
IDL> help, pops
POPS FLOAT = Array[400, 512, 512, 5]
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Analysis tools

Note: There is no organised package of analysis tools for the output of RH 1.5D. This should be added in the
future. The IDL analysis suite of RH does not work with RH 1.5D.
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CHAPTER 6

Known bugs and limitations

RH 1.5D is always evolving, and there are likely to be bugs and limitations. Please send all bug reports to
tiago.pereira-at-astro.uio.no and they will be dealt with as time permits.

Current issues

• Check the github RH issues page for an updated list.

• If the scratch or output directories are not present, the code will crash. The error message is not very
clear.

• In keyword.input, if one sets a SNAPSHOT value to be more than what is in the atmosphere file, the
code will stop with an error message: Index exceeds dimension bound. This error should be
made more clear.

• The atom files must not end with a blank line, otherwise gencol will fail and the program stops.

• Line buffered or full buffered log options still require the user to change the source code.

• Depth refinement fails in some cases due to problems caused by cubic interpolation artefacts.

• Using more than 4000 cores and writing full output may cause I/O slowdowns and Lustre contention in
some systems.

Planned features

• Support for multiple snapshots in the output files.

• pool mode be more flexible, with the possibility of several overlord nodes, useful for running with more
than 4000 processes.

• More flexible control of what output is written.
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CHAPTER 7

Appendices

A. Compiling netCDF

By far the easiest way to use RH is when the proper HDF5 library is already installed in the system. This is the
case at most supercomputers, but not usually in user workstations or laptops. Even if your operative system can
provide HDF5 through its packaging system (e.g. macports in macOS, rpm in linux distributions), this is often
unsuitable for running RH. The reason is that there needs to be consistency between the compiler, MPI libraries
used, and the HDF5 library must be compiled with parallel support.

Compiling all of this from scratch is burdensome and prone to fail. Care must be taken to ensure that each library
is built properly, and that MPI functions well. Errors with MPI libraries are particularly difficult to diagnose.

The recommended approach is to use an MPI library already in the system. If this is not possible or it is not
working properly, then MPI must also be compiled (see below for instructions for Open MPI). The following
instructions go through the different steps of compiling the libraries. They assume a bash shell is used, so please
adapt if you need csh or tcsh.

Note: The download binary is assumed to be curl (commonly available in macOS), but one can also use wget
(commonly available in Linux). To change, replace curl -O by wget -c.

Note: The instructions below download specific versions of the libraries, the latest at the time of writing. These
should work, but feel free to use more recent versions if available.

Compilers and installation directory

One should compile all the libraries with the same compiler or family of compilers. And of course be aware of
the different flags of each. Once MPI is compiled, one should always use the mpicc and mpif90 binaries for the
compiler of HDF5. If compiling MPI, then one should use the proper name (e.g. gcc, clang, icc). For this, one
uses the CC environment variable, e.g.:

export CC=mpicc # or gcc, clang, icc,
export FC=gfortran # or mpif90, ifort
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All of the instructions below assume all the libraries to be installed under a directory local to the user, and set to
the MYPREFIX environment variable, e.g.:

export MYPREFIX=/home/user/local

Compiling Open MPI (optional)

Use this if you don’t currently have any MPI library or suspect it is not working properly (e.g. too old).
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